Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Mater Chem B ; 12(7): 1748-1774, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305498

RESUMO

Stimuli-responsive hydrogels can respond to external stimuli with a change in the network structure and thus have potential application in drug release, intelligent sensing, and scaffold construction. Peptides possess robust supramolecular self-assembly ability, enabling spontaneous formation of nanostructures through supramolecular interactions and subsequently hydrogels. Therefore, peptide-based stimuli-responsive hydrogels have been widely explored as smart soft materials for biomedical applications in the last decade. Herein, we present a review article on design strategies and research progress of peptide hydrogels as stimuli-responsive materials in the field of biomedicine. The latest design and development of peptide hydrogels with responsive behaviors to stimuli are first presented. The following part provides a systematic overview of the functions and applications of stimuli-responsive peptide hydrogels in tissue engineering, drug delivery, wound healing, antimicrobial treatment, 3D cell culture, biosensors, etc. Finally, the remaining challenges and future prospects of stimuli-responsive peptide hydrogels are proposed. It is believed that this review will contribute to the rational design and development of stimuli-responsive peptide hydrogels toward biomedical applications.


Assuntos
Hidrogéis , Nanoestruturas , Hidrogéis/química , Materiais Biocompatíveis/química , Peptídeos/farmacologia , Peptídeos/química , Engenharia Tecidual , Nanoestruturas/química
2.
Chin J Nat Med ; 21(11): 830-841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035938

RESUMO

In the context of non-alcoholic fatty liver disease (NAFLD), characterized by dysregulated lipid metabolism in hepatocytes, the quest for safe and effective therapeutics targeting lipid metabolism has gained paramount importance. Sanhuang Xiexin Tang (SXT) and Baihu Tang (BHT) have emerged as prominent candidates for treating metabolic disorders. SXT combined with BHT plus Cangzhu (SBC) has been used clinically for Weihuochisheng obese patients. This retrospective analysis focused on assessing the anti-obesity effects of SBC in Weihuochisheng obese patients. We observed significant reductions in body weight and hepatic lipid content among obese patients following SBC treatment. To gain further insights, we investigated the effects and underlying mechanisms of SBC in HFD-fed mice. The results demonstrated that SBC treatment mitigated body weight gain and hepatic lipid accumulation in HFD-fed mice. Pharmacological network analysis suggested that SBC may affect lipid metabolism, mitochondria, inflammation, and apoptosis-a hypothesis supported by the hepatic transcriptomic analysis in HFD-fed mice treated with SBC. Notably, SBC treatment was associated with enhanced hepatic mitochondrial biogenesis and the inhibition of the c-Jun N-terminal kinase (JNK)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK)/NF-κB pathways. In conclusion, SBC treatment alleviates NAFLD in both obese patients and mouse models by improving lipid metabolism, potentially through enhancing mitochondrial biogenesis. These effects, in turn, ameliorate inflammation in hepatocytes.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Biogênese de Organelas , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fígado , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peso Corporal , Metabolismo dos Lipídeos , Lipídeos , Dieta Hiperlipídica/efeitos adversos
3.
Cell Death Dis ; 14(8): 531, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591836

RESUMO

Unfolded protein response (UPR) maintains the endoplasmic reticulum (ER) homeostasis, survival, and physiological function of mammalian cells. However, how cells adapt to ER stress under physiological or disease settings remains largely unclear. Here by a genome-wide CRISPR screen, we identified that RBBP8, an endonuclease involved in DNA damage repair, is required for ATF4 activation under ER stress in vitro. RNA-seq analysis suggested that RBBP8 deletion led to impaired cell cycle progression, retarded proliferation, attenuated ATF4 activation, and reduced global protein synthesis under ER stress. Mouse tissue analysis revealed that RBBP8 was highly expressed in the liver, and its expression is responsive to ER stress by tunicamycin intraperitoneal injection. Hepatocytes with RBBP8 inhibition by adenovirus-mediated shRNA were resistant to tunicamycin (Tm)-induced liver damage, cell death, and ER stress response. To study the pathological role of RBBP8 in regulating ATF4 activity, we illustrated that both RBBP8 and ATF4 were highly expressed in liver cancer tissues compared with healthy controls and highly expressed in Ki67-positive proliferating cells within the tumors. Interestingly, overexpression of RBBP8 in vitro promoted ATF4 activation under ER stress, and RBBP8 expression showed a positive correlation with ATF4 expression in liver cancer tissues by co-immunostaining. Our findings provide new insights into the mechanism of how cells adapt to ER stress through the crosstalk between the nucleus and ER and how tumor cells survive under chemotherapy or other anticancer treatments, which suggests potential therapeutic strategies against liver disease by targeting DNA damage repair, UPR or protein synthesis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias Hepáticas , Animais , Camundongos , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas , Neoplasias Hepáticas/genética , Mamíferos
4.
Obesity (Silver Spring) ; 31(8): 2076-2089, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37475688

RESUMO

OBJECTIVE: Obesity hypoventilation syndrome is associated with diaphragmatic dysfunction. This study aimed to explore the role of endoplasmic reticulum (ER) stress in mediating obesity-induced diaphragmatic dysfunction. METHODS: A pulmonary function test and ultrasound were applied to evaluate diaphragmatic function and magnetic resonance imaging was applied to measure diaphragmatic lipid deposition in human patients. For the mechanistic study, obese mice were introduced to a high-fat diet for 24 weeks, followed by diaphragmatic ultrasound measurement, transcriptomic sequencing, and respective biochemical analysis. Automatic force mapping was applied to measure the mechanical properties of C2C12 myotubes. RESULTS: People with obesity showed significant diaphragm weakness and lipid accumulation, which was further confirmed in obese mice. Consistently, diaphragms from obese mice showed altered gene expression profile in lipid metabolism and activation of ER stress response, indicated by elevated protein kinase R-like ER kinase (PERK) and c-Jun NH2 -terminal kinase (JNK) activation. In C2C12 myotubes, inhibition of PERK or JNK signaling abrogated lipotoxicity-induced intracellular lipid deposition and insulin resistance. Inhibition of JNK signaling reversed lipotoxicity-induced impairment of elasticity in C2C12 myotubes. CONCLUSIONS: These data suggest that ectopic lipid deposition impairs the diaphragmatic function of people with obesity. Activation of PERK/JNK signaling is involved in the pathogenesis of lipotoxicity-induced diaphragm weakness in obesity hypoventilation syndrome.


Assuntos
Síndrome de Hipoventilação por Obesidade , Transdução de Sinais , Camundongos , Animais , Humanos , Transdução de Sinais/fisiologia , Diafragma/metabolismo , Síndrome de Hipoventilação por Obesidade/complicações , Camundongos Obesos , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/genética , Lipídeos
5.
Front Microbiol ; 14: 1163662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293224

RESUMO

Excessive free radicals and iron death lead to oxidative damage, which is one of the main causes of aging and diseases. In this field of antioxidation, developing new, safe, and efficient antioxidants is the main research focus. Lactic acid bacteria (LAB) are natural antioxidants with good antioxidant activity and can regulate gastrointestinal microecological balance and immunity. In this study, 15 LAB strains from fermented foods ("Jiangshui" and pickles) or feces were evaluated in terms of their antioxidant attributes. Strains with strong antioxidant capacity were preliminarily screened by the following tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, superoxide anion radical scavenging capacity; ferrous ion chelating assay; hydrogen peroxide tolerance capacity. Then, the adhesion of the screened strains to the intestinal tract was examined using hydrophobic and auto-aggregation tests. The safety of the strains was analyzed based on their minimum inhibitory concentration and hemolysis, and 16S rRNA was used for molecular biological identification. Antimicrobial activity tests showed them probiotic function. The cell-free supernatant of selected strains were used to explore the protective effect against oxidative damage cells. The scavenging rate of DPPH, hydroxyl radicals, and ferrous ion-chelating of 15 strains ranged from 28.81-82.75%, 6.54-68.52%, and 9.46-17.92%, respectively, the scavenging superoxide anion scavenging activity all exceeded 10%. According to all the antioxidant-related tests, strains possessing high antioxidant activities J2-4, J2-5, J2-9, YP-1, and W-4 were screened, these five strains demonstrated tolerance to 2 mM hydrogen peroxide. J2-4, J2-5, and J2-9 were Lactobacillus fermentans and γ-hemolytic (non-hemolytic). YP-1 and W-4 were Lactobacillus paracasei and α-hemolytic (grass-green hemolytic). Although L. paracasei has been proven as a safe probiotic without hemolytic characteristics, the hemolytic characteristics of YP-1 and W-4 should be further studied. Due to the weak hydrophobicity and antimicrobial activity of J2-4, finally, we selected J2-5, J2-9 for cell experiment, J2-5 and J2-9 showed an excellent ability that resistant to oxidative damage by increasing SOD, CAT, T-AOC activity of 293T cells. Therefore, J2-5, and J2-9 strains from fermented foods "Jiangshui" could be used as potential antioxidants for functional food, health care, and skincare.

6.
Environ Sci Pollut Res Int ; 30(30): 74838-74852, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209334

RESUMO

Workplace violence (WPV) is a prevalent phenomenon, especially in the healthcare setting. WPV against healthcare workers (HCWs) has increased during the COVID-19 epidemic. This meta-analysis determined the prevalence and risk factors of WPV. A database search was conducted across six databases in May 2022, which was updated in October 2022. WPV prevalence among HCWs was the main outcome. Data were stratified by WPV/HCW type, pandemic period (early, mid, late), and medical specialty. WPV risk factors were the secondary outcome. All analyses were conducted through STATA. Newcastle Ottawa Scale evaluated the quality. Sensitivity analysis identified effect estimate changes. A total of 38 studies (63,672 HCWs) were analyzed. The prevalence of WPV of any kind (43%), physical (9%), verbal (48%), and emotional (26%) was high. From mid-pandemic to late-pandemic, WPV (40-47%), physical violence (12-23%), and verbal violence (45-58%) increased. Nurses had more than double the rate of physical violence (13% vs. 5%) than physicians, while WPV and verbal violence were equal. Gender, profession, and COVID-19 timing did not affect WPV, physical, or verbal violence risk. COVID-19 HCWs were more likely to be physically assaulted (logOR = 0.54; 95% CI: 0.10: 0.97). Most healthcare employees suffer verbal violence, followed by emotional, bullying, sexual harassment, and physical assault. Pandemic-related workplace violence increased. Nurses were twice as violent as doctors. COVID-19 healthcare employees had a higher risk of physical and workplace violence.


Assuntos
COVID-19 , Violência no Trabalho , Humanos , Violência no Trabalho/psicologia , Pandemias , Inquéritos e Questionários , Estudos Transversais , COVID-19/epidemiologia , Pessoal de Saúde , Prevalência , Local de Trabalho
7.
J Oncol ; 2023: 6114976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866237

RESUMO

Background: Current research studies have suggested that glucose deprivation (GD)-based tumor microenvironment (TME) can promote epithelial-mesenchymal transition (EMT) of tumor cells, leading to tumor invasion and metastasis. However, no one has yet studied detailedly the synthetic studies that include GD features in TME with EMT status. In our research, we comprehensively developed and validated a robust signature regarding GD and EMT status to provide prognostic value for patients with liver cancer. Methods: GD and EMT status were estimated with transcriptomic profiles based on WGCNA and t-SNE algorithms. Two cohorts of training (TCGA_LIHC) and validation (GSE76427) datasets were analyzed with the Cox regression and logistic regression analyses. We identified a 2-mRNA signature to establish a GD-EMT-based gene risk model for the prediction of HCC relapse. Results: Patients with significant GD-EMT status were divided into two subgroups: GDlow/EMTlow and GDhigh/EMThigh, with the latter having significantly worse recurrence-free survival (P < 0.01). We employed the least absolute shrinkage and selection operator (LASSO) technique as a method for HNF4A and SLC2A4 filtering and constructing a risk score for risk stratification. In the multivariate analysis, this risk score predicted recurrence-free survival (RFS) in both the discovery and validation cohorts and remained valid in patients stratified by TNM stage and age at diagnosis. The nomogram that combines risk score and TNM stage as well as age produces improved performance and net benefits in the analysis of calibration and decision curves in training and validation groups. Conclusions: The GD-EMT-based signature predictive model may provide a prognosis classifier for HCC patients with a high risk of postoperative recurrence to decrease the relapse rate.

8.
J Nutr Biochem ; 111: 109178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228974

RESUMO

Dysregulated production of peptide hormones is the key pathogenic factor of various endocrine diseases. Endoplasmic reticulum (ER) associated degradation (ERAD) is a critical machinery in maintaining ER proteostasis in mammalian cells by degrading misfolded proteins. Dysfunction of ERAD leads to maturation defect of many peptide hormones, such as provasopressin (proAVP), which results in the occurrence of Central Diabetes Insipidus. However, drugs targeting ERAD to regulate the production of peptide hormones are very limited. Herbal products provide not only nutritional sources, but also alternative therapeutics for chronic diseases. Virtual screening provides an effective and high-throughput strategy for identifying protein structure-based interacting compounds extracted from a variety of dietary or herbal sources, which could be served as (pro)drugs for preventing or treating endocrine diseases. Here, we performed a virtual screening by directly targeting SEL1L of the most conserved SEL1L-HRD1 ERAD machinery. Further, we analyzed 58 top-ranked compounds and demonstrated that Cryptochlorogenic acid (CCA) showed strong affinity with the binding pocket of SEL1L with HRD1. Through structure-based docking, protein expression assays, and FACS analysis, we revealed that CCA enhanced ERAD activity and promoted the degradation of misfolded proAVP, thus facilitated the secretion of well-folded proAVP. These results provide us with insights into drug discovery strategies targeting ER protein homeostasis, as well as candidate compounds for treating hormone-related diseases.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hormônios Peptídicos , Animais , Retículo Endoplasmático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Hormônios Peptídicos/metabolismo , Mamíferos/metabolismo
9.
Pharmacol Res ; 187: 106585, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455814

RESUMO

Disturbed endoplasmic reticulum (ER) stress response driven by the excessive lipid accumulation in the liver is a characteristic feature in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Restoring metabolic homeostasis by targeting ER stress is a potentially therapeutic strategy for NAFLD. Here we aim to identify novel proteins or pathways involved in regulating ER stress response and therapeutic targets for alleviating NAFLD. Proteomic and transcriptomic analysis demonstrated that major urinary proteins (MUPs) were significantly reduced in the livers from NAFLD mouse models. Then we confirmed that MUP1, the major secreted form of MUPs, was reduced at mRNA and protein expression levels in hepatocytes both in vivo and in vitro under ER stress. We further illustrated that MUP1 protein levels in the urine were reduced in mice with NAFLD, which was reversed by GLP-1 receptor agonist treatment. To study the relationship between ER stress and MUP1 biology, our analysis demonstrated that MUP1 was misfolded and trapped in the ER under ER stress in vivo. Interestingly, we discovered that recombinant MUP1 treatment in hepatocytes increased calcium efflux from the ER, which resulted in transient ER stress response, including reduced protein synthesis. These responses facilitated the alleviation of chemical induced ER stress in hepatocytes, which was suggested as "pre-adaptive ER stress". Besides, recombinant MUP1 pretreatment also improved ER stress-induced insulin resistance in hepatocytes. Our findings revealed a novel and critical role of MUP1, and recombinant MUP1 or its potential derivates may serve as a promising therapeutic target for alleviating NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Estresse do Retículo Endoplasmático , Hepatócitos , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteômica
10.
J Nutr Biochem ; 112: 109213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370931

RESUMO

Diabetic retinopathy (DR) is one of the most prevalent microvascular complications caused by diabetes mellitus. Previous studies demonstrate that microvascular endothelial inflammation caused by chronic hyperglycemia and hyperlipidemia plays a key role in the pathogenesis of DR. However, the detailed mechanisms on how endothelial inflammation contributes to DR are not fully understood. The STING pathway is an important innate immune signaling pathway. Although STING has been implicated in multiple autoimmune and metabolic diseases, it is not clear whether STING is involved in the pathogenesis of DR. Thus, re-analysis of the public single cell RNA sequencing (sc-RNAseq) data demonstrated that STING was highly expressed in mouse retinal vessels. Moreover, our results demonstrated that STING and p-TBK1 protein levels in retinal endothelial cells are significantly increased in mice fed with high fat diet compared with chow diet. In vitro, palmitic acid treatment on HRVECs induced mitochondrial DNA leakage into the cytosol, and augmented p-TBK1 protein and IFN-ß mRNA levels. As STING is localized to the ER, we analyzed the relation between STING activation and ER stress. In HRVECs, STING pathway was shown to be activated under chemical-induced ER stress, but attenuated when IRE1α was abolished by genetic deletion or pharmacological inhibition. Taken together, our findings revealed that STING signaling plays an important role in mediating lipotoxicity-induced endothelial inflammatory and injury, and IRE1α-XBP1 signaling potentiated STING signaling. Thus, targeting the IRE1α or STING pathways to alleviate endothelial inflammation provides candidate therapeutic target for treating DR as well as other microvascular complications.


Assuntos
Retinopatia Diabética , Hiperlipidemias , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células Endoteliais/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Hiperlipidemias/metabolismo , Retinopatia Diabética/genética , Inflamação/metabolismo
11.
Comput Math Methods Med ; 2022: 1911448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267312

RESUMO

Objective: This paper discussed the dredging effect and safety of ethylenediaminetetraacetic acid (EDTA) combined with C-pilot files and microultrasound (mUS) on root canal calcification. Methods: From October 2021 to January 2022, 132 patients with calcified root canals treated in our hospital were selected as the research subjects. Among them, 64 cases who received EDTA combined with C-pilot Files and mUS plus ultrasonic instruments to dredge calcified root canals were regarded as the research group (RG), and another 68 cases given ultrasonic instruments plus C-pilot files were regarded as the control group (CG). The root canal dredging time was recorded, and the dredging success rate and total success rate of different tooth positions and calcification sites were compared between groups. The clinical efficacy was assessed 6 months after treatment. Pain severity was evaluated by the Pain Intensity Numerical Rating Scale (PI-NRS) before (T0), during (T1), and after treatment (T2). Finally, the incidence of adverse reactions within one week after treatment was counted. Results: RG was observed with statistically higher success rates of root canal dredging in different tooth positions and calcified sites than CG (P < 0.05). Besides, the total effective rate of treatment was 92.19% in RG, which was also higher compared with CG, while the root canal dredging time in RG was shorter than that in CG (P < 0.05). Increased NRS scores were found in both groups at T1, and the score in RG was significantly lower compared with that in CG. At T2, both groups showed a lower PI-NRS score than T1 but higher than T0, and the score at T2 was also lower in RG as compared to CG (P < 0.05). Moreover, the reduced incidence of adverse reactions were observed in RG compared with CG (P < 0.05). Conclusions: EDTA combined with C-pilot files and mUS can effectively improve the dredging success rate of root canals obstructed by calcification, shorten the dredging time, and improve patient comfort, which is an effective method for clinical dredging of calcification obstructed root canals.


Assuntos
Calcinose , Preparo de Canal Radicular , Humanos , Calcinose/diagnóstico por imagem , Cavidade Pulpar/diagnóstico por imagem , Ácido Edético , Preparo de Canal Radicular/efeitos adversos , Tratamento do Canal Radicular/efeitos adversos , Tratamento do Canal Radicular/métodos
12.
Sci Total Environ ; 852: 158543, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067857

RESUMO

Plant leaves retain atmospheric particulate matter (PM) on their surfaces, helping PM removal and risk reduction of respiratory tract infection. Several processes (deposition, resuspension, rainfall removal) can influence the PM accumulation on leaves and different leaf microstructures (e.g., trichomes, epicuticular waxes) can also be involved in retaining PM. However, the accumulation and distribution of PM on leaves, particularly at the stomata, are unclear, and the lack of characterization methods limits our understanding of this process. Thus, in this study, we aimed to explore the pathway through which PM2.5 (aerodynamic diameter ≤ 2.5 µm) enters plant leaves, and the penetration depth of PM2.5 along the entry route. Here, an indoor experiment using diamond powder as a tracer to simulate PM2.5 deposition on leaves was carried out. Then, the treated and non-treated leaves were scanned by using three-dimensional (3D) X-ray microscopy. Next, the grayscale value of the scanned images was used to compare PM2.5 accumulation in stomatal and non-stomatal areas of the treated and non-treated leaves, respectively. Finally, a total PM2.5 volume from the abaxial epidermis was calculated. The results showed that, first, a large amount of PM2.5 accumulates within leaf stomata, whereas PM2.5 does not accumulate at non-stomatal areas. Then, the penetration depth of PM2.5 in stomata of most tree species was 5-14 µm from the abaxial epidermis. For the first time, 3D X-ray microscope scanning was used to confirm that a pathway by which PM2.5 enters the leaves is through the stomata, which is fundamental for further research on how PM2.5 translocates and interacts with tissues and cells in leaves.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Microscopia , Pós , Raios X , Folhas de Planta/química , Ceras/química , Diamante/análise , Estômatos de Plantas
13.
Front Endocrinol (Lausanne) ; 13: 967016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034446

RESUMO

Endoplasmic reticulum (ER) is the principal organelle for protein synthesis, such as hepatokines and transmembrane proteins, and is critical for maintaining physiological function. Dysfunction of ER is associated with metabolic disorders. However, the role of ER homeostasis as well as hepatokines in the progression of non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Here we comprehensively analyzed the RNA-seq profiles of liver biopsies from 206 NAFLD patients and 10 controls from dataset GSE135251. The co-expression modules were constructed based on weighted gene co-expression network analysis and six co-expression modules were identified, of which brown module stood out to be significantly associated with fibrosis stage and NAFLD activity score (NAS). Subsequently, cytoscape with cytoHubba plugin was applied to identify hub genes in the brown module. GO and KEGG enrichment analysis of the top 20 hub genes were performed and showed the involvement of extracellular matrix formation, collagen synthesis and decomposition, etc. Further, the expression of the top 20 hub genes were found to be a consistent increasing trend as the fibrosis stages and NAS increased, which have been validated both in HFD fed and HFHC fed mice. Among these genes, THY1, PTGDS, TMPRSS3, SPON1, COL1A2, RHBDF1, COL3A1, COL5A1, COL1A1 and IGFBP7 performed well in distinguishing fibrosis stage, while COL1A2, COL3A1, THY1, RHBDF1 and COL1A2 exhibited good capacity to discriminate NAS. Besides, RHBDF1, COL3A1, QSOX1, STING1, COL5A1, IGFBP7, COL4A2, COL1A1, FKBP10 and COL1A2 also showed a strong power in the diagnosis of NAFLD. In addition, COL1A1, COL1A2, COL3A1, COL8A2, IGFBP7, PGF, PTGDS, SPON1, THY1 and TIMP1 were identified as secretome genes from the top 20 hub genes. Of them, circulated THY1 and collagen III level were validated to be significantly elevated in the MCD diet-induced mice. Thus, we provided a systemic view on understanding the pathological roles and mechanisms of ER as well as secretome in NAFLD progression. THY1, COL1A1, COL1A2, COL3A1 and RHBDF1 could be served as candidate biomarkers to evaluate the progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Retículo Endoplasmático , Fibrose , Proteínas de Membrana , Camundongos , Secretoma , Transcriptoma
14.
World J Psychiatry ; 12(6): 779-786, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35978968

RESUMO

As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.

15.
Small ; 18(22): e2200646, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510984

RESUMO

Photothermal therapy (PTT) as a noninvasive hyperthermia exhibits high potential for anti-cancer treatments. The explosion of efficient photothermal agents (PTAs) keeps developing rapidly. MXene stands out due to its intriguing structures, fantastic photodynamic properties, and good biocompatibility. However, the potential of MXenes has not been sufficiently explored in PTT. Its versatile chemical compositions of MXenes provide vast opportunities to discover new candidates. Considering that the metallic feature is mainly attributed to the metal element, anionic modulation may open a distinct avenue to propel efficient PTAs with metallic nature, which is expected for high light-harvesting over near-infrared (NIR)-I and NIR-II. As a paradigm, metal carbonitride is chosen to visualize the influences of anionic modulation. Taking advantage of electron injection from nitrogen, the distinct carbonitride Ti3 C1.15 N0.85 F0.88 O0.56 (OH)0.56 exhibits a strong NIR absorption (36.6 L g-1 cm-1 at 808 nm, 43.5 L g-1 cm-1 at 1064 nm), resulting in efficient photonic hyperthermia against tumors in vitro and in vivo. Looking through a large family of MXenes, this proof-of-principle demonstration offers a deep understanding between atomic composition and physicochemical properties, which further solidifies MXenes with all the potential for biomedical applications.


Assuntos
Hipertermia Induzida , Fototerapia , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos
16.
Cell Mol Immunol ; 19(7): 791-804, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545662

RESUMO

Type 2 diabetes (T2D) is highly associated with obesity. However, the factors that drive the transition from excessive weight gain to glucose metabolism disruption are still uncertain and seem to revolve around systemic immune disorder. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial metabolites, have been reported to be altered in obese people and to lead to metabolic dysfunction during obesity. By studying the immunophenotypes of blood MAIT cells from a cross-sectional cohort of obese participants with/without T2D, we found an elevation in CD27-negative (CD27-) MAIT cells producing a high level of IL-17 under T2D obese conditions, which could be positively correlated with impaired glucose metabolism in obese people. We further explored microbial translocation caused by gut barrier dysfunction in obese people as a triggering factor of MAIT cell abnormalities. Specifically, accumulation of the bacterial strain Bacteroides ovatus in the peripheral blood drove IL-17-producing CD27- MAIT cell expansion and could be associated with T2D risk in obese individuals. Overall, these results suggest that an aberrant gut microbiota-immune axis in obese people may drive or exacerbate T2D. Importantly, CD27- MAIT cell subsets and Bacteroides ovatus could represent targets for novel interventional strategies. Our findings extend current knowledge regarding the clinical relevance of body mass index (BMI)-associated variation in circulating MAIT cells to reveal the role of these cells in obesity-related T2D progression and the underlying cellular mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Células T Invariantes Associadas à Mucosa , Bacteroides , Estudos Transversais , Glucose , Humanos , Interleucina-17 , Obesidade , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
17.
Front Med (Lausanne) ; 8: 758690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912820

RESUMO

Background: It is often difficult to diagnose pituitary microadenoma (PM) by MRI alone, due to its relatively small size, variable anatomical structure, complex clinical symptoms, and signs among individuals. We develop and validate a deep learning -based system to diagnose PM from MRI. Methods: A total of 11,935 infertility participants were initially recruited for this project. After applying the exclusion criteria, 1,520 participants (556 PM patients and 964 controls subjects) were included for further stratified into 3 non-overlapping cohorts. The data used for the training set were derived from a retrospective study, and in the validation dataset, prospective temporal and geographical validation set were adopted. A total of 780 participants were used for training, 195 participants for testing, and 545 participants were used to validate the diagnosis performance. The PM-computer-aided diagnosis (PM-CAD) system consists of two parts: pituitary region detection and PM diagnosis. The diagnosis performance of the PM-CAD system was measured using the receiver operating characteristics (ROC) curve and area under the ROC curve (AUC), calibration curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score. Results: Pituitary microadenoma-computer-aided diagnosis system showed 94.36% diagnostic accuracy and 98.13% AUC score in the testing dataset. We confirm the robustness and generalization of our PM-CAD system, the diagnostic accuracy in the internal dataset was 96.50% and in the external dataset was 92.26 and 92.36%, the AUC was 95.5, 94.7, and 93.7%, respectively. In human-computer competition, the diagnosis performance of our PM-CAD system was comparable to radiologists with >10 years of professional expertise (diagnosis accuracy of 94.0% vs. 95.0%, AUC of 95.6% vs. 95.0%). For the misdiagnosis cases from radiologists, our system showed a 100% accurate diagnosis. A browser-based software was designed to assist the PM diagnosis. Conclusions: This is the first report showing that the PM-CAD system is a viable tool for detecting PM. Our results suggest that the PM-CAD system is applicable to radiology departments, especially in primary health care institutions.

18.
Ann Transl Med ; 9(20): 1550, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790756

RESUMO

BACKGROUND: The prevalence of hyperuricemia (HUA) and gout continues to increase in China. Research suggests that HUA may be related to many diseases other than gout. However, further population research is required to investigate the association between HUA and metabolic syndromes. This study sought to investigate the prevalence of HUA in an average population in China, and the association between serum uric acid (UA) levels and related metabolic disorders. METHODS: This multicenter retrospective real-world study examined the hospital information system data of 4 tertiary hospitals in 3 provinces in China. The data of patients aged between 18 and 80 years, who had attended at least 1 medical appointment at which their UA level was recorded, were analyzed to evaluate associations between UA levels and metabolic disorders. RESULTS: Among the 374,506 enrolled subjects (49.7% male; mean age 51.5 years old), the overall prevalence of HUA and gout were 14.8% and 0.5%, respectively. The prevalence was higher among males than females (17.6% vs. 12.0%, 0.8% vs. 0.1%; both P<0.001). Groups exhibiting higher UA levels had increased adjusted odds ratios for dyslipidemia and chronic kidney disease (CKD) in both sexes. Changes in UA levels from the baseline were negatively correlated with changes in the estimated glomerular filtration rate and hemoglobin A1c among both sexes (all P<0.001), and were positively correlated with changes in total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) (all P<0.05) among males, and changes in TC, TG, LDL-C and glucose (all P<0.001) among females. CONCLUSIONS: HUA is associated with dyslipidemia and CKD both cross-sectionally and longitudinally. Similar phenomena were observed in both sexes.

19.
Front Cardiovasc Med ; 8: 707008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621797

RESUMO

Background: Chronic inflammation in type 2 diabetes mellitus (T2DM) is an essential contributor to the development of diabetic retinopathy (DR). The monocyte-to-high-density lipoprotein cholesterol (HDL-C) ratio (MHR) is a novel and simple measure related to inflammatory and oxidative stress status. However, little is known regarding the role of the MHR in evaluating the development of DR. Methods: A total of 771 patients with T2DM and 607 healthy controls were enrolled in this cross-sectional study. MHR determination and eye examination were performed. The association of MHR with the prevalence of DR in T2DM patients was analyzed. Results: The MHR in patients with DR was significantly higher than that in both non-DR diabetic patients (P < 0.05) and healthy controls (P < 0.01). No significance was observed in the MHR of different DR severity grades. Moreover, the MHR was similar between patients with non-macular oedema and those with macular oedema. Logistic regression analysis demonstrated that MHR was independently associated with the prevalence of DR in diabetic patients [odds ratio (OR) = 1.438, 95% confidence interval (CI): 1.249-1.655, P < 0.01]. After additional stratification by HbA1c level and diabetic duration, the MHR was still independently associated with the prevalence of DR. Conclusions: Our study suggests that the MHR can be used as a marker to indicate the prevalence of DR in patients with T2DM.

20.
Diabetes Metab Syndr Obes ; 14: 2841-2849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188507

RESUMO

PURPOSE: The aim of this study was to investigate the association between high-normal thyrotropin (TSH) levels and the prevalence of non-alcoholic fatty liver disease (NAFLD) in euthyroid patients with T2DM. METHODS: A total of 2289 euthyroid adults with T2DM were included in this cross-sectional study conducted at the Third Affiliated Hospital of Sun Yat-sen University from January 2016 to December 2018. NAFLD was diagnosed by abdominal ultrasound. Thyroid function parameters, including the levels of TSH, free triiodothyronine (FT3) and free thyroxine (FT4), were analyzed. The patients were stratified by quartiles (Q1-4) of TSH levels. Multivariate logistic regression models were used to evaluate the association between the quartiles of TSH levels and the risk of NAFLD in euthyroid adults with T2DM. RESULTS: There were 940 (41.1%) euthyroid adults with T2DM who were diagnosed with NAFLD. The subjects were divided according to the thyroid function parameter quartiles. The prevalence of NAFLD increased with increasing TSH level quartiles (Q1 to Q4: 34.8%, 37.5%, 44.9% and 47.0%, P<0.01) but not with increasing FT3 or FT4 level quartiles. In the multivariate logistic regression model, compared with the lowest TSH level quartile (Q1), the highest TSH level quartile (Q4) (OR=1.610, 95% CI=1.131-2.289, P=0.008) was independently associated with an increased risk of NAFLD in euthyroid adults with T2DM after adjusting for multiple confounders. After additional stratification by the level of glycosylated haemoglobin (HbA1c) and body mass index (BMI), the highest TSH level quartile was still independently associated with an increased risk of NAFLD in euthyroid patients with T2DM who had an HbA1c level≥7% or a BMI<28 kg/m2. CONCLUSION: High-normal serum TSH levels are significantly associated with the presence of NAFLD in T2DM patients with euthyroid function, which provide novel insight for treating NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...